Extensions 1→N→G→Q→1 with N=C4 and Q=S3×C23

Direct product G=N×Q with N=C4 and Q=S3×C23
dρLabelID
S3×C23×C496S3xC2^3xC4192,1511

Semidirect products G=N:Q with N=C4 and Q=S3×C23
extensionφ:Q→Aut NdρLabelID
C41(S3×C23) = C22×S3×D4φ: S3×C23/C22×S3C2 ⊆ Aut C448C4:1(S3xC2^3)192,1514
C42(S3×C23) = C23×D12φ: S3×C23/C22×C6C2 ⊆ Aut C496C4:2(S3xC2^3)192,1512

Non-split extensions G=N.Q with N=C4 and Q=S3×C23
extensionφ:Q→Aut NdρLabelID
C4.1(S3×C23) = C2×S3×D8φ: S3×C23/C22×S3C2 ⊆ Aut C448C4.1(S3xC2^3)192,1313
C4.2(S3×C23) = C2×D8⋊S3φ: S3×C23/C22×S3C2 ⊆ Aut C448C4.2(S3xC2^3)192,1314
C4.3(S3×C23) = C2×D83S3φ: S3×C23/C22×S3C2 ⊆ Aut C496C4.3(S3xC2^3)192,1315
C4.4(S3×C23) = D813D6φ: S3×C23/C22×S3C2 ⊆ Aut C4484C4.4(S3xC2^3)192,1316
C4.5(S3×C23) = C2×S3×SD16φ: S3×C23/C22×S3C2 ⊆ Aut C448C4.5(S3xC2^3)192,1317
C4.6(S3×C23) = C2×Q83D6φ: S3×C23/C22×S3C2 ⊆ Aut C448C4.6(S3xC2^3)192,1318
C4.7(S3×C23) = C2×D4.D6φ: S3×C23/C22×S3C2 ⊆ Aut C496C4.7(S3xC2^3)192,1319
C4.8(S3×C23) = C2×Q8.7D6φ: S3×C23/C22×S3C2 ⊆ Aut C496C4.8(S3xC2^3)192,1320
C4.9(S3×C23) = SD1613D6φ: S3×C23/C22×S3C2 ⊆ Aut C4484C4.9(S3xC2^3)192,1321
C4.10(S3×C23) = C2×S3×Q16φ: S3×C23/C22×S3C2 ⊆ Aut C496C4.10(S3xC2^3)192,1322
C4.11(S3×C23) = C2×Q16⋊S3φ: S3×C23/C22×S3C2 ⊆ Aut C496C4.11(S3xC2^3)192,1323
C4.12(S3×C23) = C2×D24⋊C2φ: S3×C23/C22×S3C2 ⊆ Aut C496C4.12(S3xC2^3)192,1324
C4.13(S3×C23) = D12.30D4φ: S3×C23/C22×S3C2 ⊆ Aut C4964C4.13(S3xC2^3)192,1325
C4.14(S3×C23) = S3×C4○D8φ: S3×C23/C22×S3C2 ⊆ Aut C4484C4.14(S3xC2^3)192,1326
C4.15(S3×C23) = SD16⋊D6φ: S3×C23/C22×S3C2 ⊆ Aut C4484C4.15(S3xC2^3)192,1327
C4.16(S3×C23) = D815D6φ: S3×C23/C22×S3C2 ⊆ Aut C4484+C4.16(S3xC2^3)192,1328
C4.17(S3×C23) = D811D6φ: S3×C23/C22×S3C2 ⊆ Aut C4484C4.17(S3xC2^3)192,1329
C4.18(S3×C23) = D8.10D6φ: S3×C23/C22×S3C2 ⊆ Aut C4964-C4.18(S3xC2^3)192,1330
C4.19(S3×C23) = S3×C8⋊C22φ: S3×C23/C22×S3C2 ⊆ Aut C4248+C4.19(S3xC2^3)192,1331
C4.20(S3×C23) = D84D6φ: S3×C23/C22×S3C2 ⊆ Aut C4488-C4.20(S3xC2^3)192,1332
C4.21(S3×C23) = D85D6φ: S3×C23/C22×S3C2 ⊆ Aut C4488+C4.21(S3xC2^3)192,1333
C4.22(S3×C23) = D86D6φ: S3×C23/C22×S3C2 ⊆ Aut C4488-C4.22(S3xC2^3)192,1334
C4.23(S3×C23) = S3×C8.C22φ: S3×C23/C22×S3C2 ⊆ Aut C4488-C4.23(S3xC2^3)192,1335
C4.24(S3×C23) = D24⋊C22φ: S3×C23/C22×S3C2 ⊆ Aut C4488+C4.24(S3xC2^3)192,1336
C4.25(S3×C23) = C24.C23φ: S3×C23/C22×S3C2 ⊆ Aut C4488+C4.25(S3xC2^3)192,1337
C4.26(S3×C23) = SD16.D6φ: S3×C23/C22×S3C2 ⊆ Aut C4968-C4.26(S3xC2^3)192,1338
C4.27(S3×C23) = C22×D4⋊S3φ: S3×C23/C22×S3C2 ⊆ Aut C496C4.27(S3xC2^3)192,1351
C4.28(S3×C23) = C2×D126C22φ: S3×C23/C22×S3C2 ⊆ Aut C448C4.28(S3xC2^3)192,1352
C4.29(S3×C23) = C22×D4.S3φ: S3×C23/C22×S3C2 ⊆ Aut C496C4.29(S3xC2^3)192,1353
C4.30(S3×C23) = C22×Q82S3φ: S3×C23/C22×S3C2 ⊆ Aut C496C4.30(S3xC2^3)192,1366
C4.31(S3×C23) = C2×Q8.11D6φ: S3×C23/C22×S3C2 ⊆ Aut C496C4.31(S3xC2^3)192,1367
C4.32(S3×C23) = C22×C3⋊Q16φ: S3×C23/C22×S3C2 ⊆ Aut C4192C4.32(S3xC2^3)192,1368
C4.33(S3×C23) = C2×D4⋊D6φ: S3×C23/C22×S3C2 ⊆ Aut C448C4.33(S3xC2^3)192,1379
C4.34(S3×C23) = C2×Q8.13D6φ: S3×C23/C22×S3C2 ⊆ Aut C496C4.34(S3xC2^3)192,1380
C4.35(S3×C23) = C12.C24φ: S3×C23/C22×S3C2 ⊆ Aut C4484C4.35(S3xC2^3)192,1381
C4.36(S3×C23) = C2×Q8.14D6φ: S3×C23/C22×S3C2 ⊆ Aut C496C4.36(S3xC2^3)192,1382
C4.37(S3×C23) = D12.32C23φ: S3×C23/C22×S3C2 ⊆ Aut C4488+C4.37(S3xC2^3)192,1394
C4.38(S3×C23) = D12.33C23φ: S3×C23/C22×S3C2 ⊆ Aut C4488-C4.38(S3xC2^3)192,1395
C4.39(S3×C23) = D12.34C23φ: S3×C23/C22×S3C2 ⊆ Aut C4488+C4.39(S3xC2^3)192,1396
C4.40(S3×C23) = D12.35C23φ: S3×C23/C22×S3C2 ⊆ Aut C4968-C4.40(S3xC2^3)192,1397
C4.41(S3×C23) = C22×D42S3φ: S3×C23/C22×S3C2 ⊆ Aut C496C4.41(S3xC2^3)192,1515
C4.42(S3×C23) = C2×D46D6φ: S3×C23/C22×S3C2 ⊆ Aut C448C4.42(S3xC2^3)192,1516
C4.43(S3×C23) = C22×S3×Q8φ: S3×C23/C22×S3C2 ⊆ Aut C496C4.43(S3xC2^3)192,1517
C4.44(S3×C23) = C22×Q83S3φ: S3×C23/C22×S3C2 ⊆ Aut C496C4.44(S3xC2^3)192,1518
C4.45(S3×C23) = C2×Q8.15D6φ: S3×C23/C22×S3C2 ⊆ Aut C496C4.45(S3xC2^3)192,1519
C4.46(S3×C23) = C6.C25φ: S3×C23/C22×S3C2 ⊆ Aut C4484C4.46(S3xC2^3)192,1523
C4.47(S3×C23) = S3×2+ 1+4φ: S3×C23/C22×S3C2 ⊆ Aut C4248+C4.47(S3xC2^3)192,1524
C4.48(S3×C23) = D6.C24φ: S3×C23/C22×S3C2 ⊆ Aut C4488-C4.48(S3xC2^3)192,1525
C4.49(S3×C23) = S3×2- 1+4φ: S3×C23/C22×S3C2 ⊆ Aut C4488-C4.49(S3xC2^3)192,1526
C4.50(S3×C23) = D12.39C23φ: S3×C23/C22×S3C2 ⊆ Aut C4488+C4.50(S3xC2^3)192,1527
C4.51(S3×C23) = C22×C24⋊C2φ: S3×C23/C22×C6C2 ⊆ Aut C496C4.51(S3xC2^3)192,1298
C4.52(S3×C23) = C22×D24φ: S3×C23/C22×C6C2 ⊆ Aut C496C4.52(S3xC2^3)192,1299
C4.53(S3×C23) = C2×C4○D24φ: S3×C23/C22×C6C2 ⊆ Aut C496C4.53(S3xC2^3)192,1300
C4.54(S3×C23) = C22×Dic12φ: S3×C23/C22×C6C2 ⊆ Aut C4192C4.54(S3xC2^3)192,1301
C4.55(S3×C23) = C2×C8⋊D6φ: S3×C23/C22×C6C2 ⊆ Aut C448C4.55(S3xC2^3)192,1305
C4.56(S3×C23) = C2×C8.D6φ: S3×C23/C22×C6C2 ⊆ Aut C496C4.56(S3xC2^3)192,1306
C4.57(S3×C23) = C24.9C23φ: S3×C23/C22×C6C2 ⊆ Aut C4484C4.57(S3xC2^3)192,1307
C4.58(S3×C23) = D4.11D12φ: S3×C23/C22×C6C2 ⊆ Aut C4484C4.58(S3xC2^3)192,1310
C4.59(S3×C23) = D4.12D12φ: S3×C23/C22×C6C2 ⊆ Aut C4484+C4.59(S3xC2^3)192,1311
C4.60(S3×C23) = D4.13D12φ: S3×C23/C22×C6C2 ⊆ Aut C4964-C4.60(S3xC2^3)192,1312
C4.61(S3×C23) = C23×Dic6φ: S3×C23/C22×C6C2 ⊆ Aut C4192C4.61(S3xC2^3)192,1510
C4.62(S3×C23) = C2×D4○D12φ: S3×C23/C22×C6C2 ⊆ Aut C448C4.62(S3xC2^3)192,1521
C4.63(S3×C23) = C2×Q8○D12φ: S3×C23/C22×C6C2 ⊆ Aut C496C4.63(S3xC2^3)192,1522
C4.64(S3×C23) = S3×C22×C8central extension (φ=1)96C4.64(S3xC2^3)192,1295
C4.65(S3×C23) = C22×C8⋊S3central extension (φ=1)96C4.65(S3xC2^3)192,1296
C4.66(S3×C23) = C2×C8○D12central extension (φ=1)96C4.66(S3xC2^3)192,1297
C4.67(S3×C23) = C2×S3×M4(2)central extension (φ=1)48C4.67(S3xC2^3)192,1302
C4.68(S3×C23) = C2×D12.C4central extension (φ=1)96C4.68(S3xC2^3)192,1303
C4.69(S3×C23) = M4(2)⋊26D6central extension (φ=1)484C4.69(S3xC2^3)192,1304
C4.70(S3×C23) = S3×C8○D4central extension (φ=1)484C4.70(S3xC2^3)192,1308
C4.71(S3×C23) = M4(2)⋊28D6central extension (φ=1)484C4.71(S3xC2^3)192,1309
C4.72(S3×C23) = C23×C3⋊C8central extension (φ=1)192C4.72(S3xC2^3)192,1339
C4.73(S3×C23) = C22×C4.Dic3central extension (φ=1)96C4.73(S3xC2^3)192,1340
C4.74(S3×C23) = C2×D4.Dic3central extension (φ=1)96C4.74(S3xC2^3)192,1377
C4.75(S3×C23) = C12.76C24central extension (φ=1)484C4.75(S3xC2^3)192,1378
C4.76(S3×C23) = C22×C4○D12central extension (φ=1)96C4.76(S3xC2^3)192,1513
C4.77(S3×C23) = C2×S3×C4○D4central extension (φ=1)48C4.77(S3xC2^3)192,1520

׿
×
𝔽